車載用高効率燃焼圧センサー基板に最適なランガサイト型結晶の開発 結晶材料化学研究部門、シチズンホールディングス(株)* 宇田 聡、八百川律子*、Zhao Hengyu、前田健作、野澤 純、藤原航三

概要

車載用燃焼圧センサー用として高抵抗を示すランガサイト型圧電結晶をデザインした。 すなわち4元系のランガサイト型結晶、CTGS、CNGSの適正組成をイオン半径、結晶構 成要素の結晶サイト存在に関する自由度、および、vacancyの存在形態から検討した。そ の結果、Ga/Ta 比とSi 含有量が化学量論組成より小さい CTGS 結晶で 1.8×10¹⁰Ω・cm @400°C の比抵抗が得られた。これは、圧力センサーの仕様をクリアしている。

1. はじめに

より良い地球環境の実現に向け、エネルギー効率化、二酸化炭素削減に有用な車載用燃 焼圧センサーの開発は重要である。燃焼圧センサーの圧電素子としてランガサイト型単結 晶を使用しているが、結晶の抵抗値が低いと高温で信号出力のドリフトが起きてしまう問 題がある。このため実用化には絶縁性の向上が必要である。車載用燃焼圧センサー用に圧 電結晶として使用するには、400°C での抵抗率を 1E+10Ω・cm以上にする必要がある。そ こで、本研究ではランガテイト(LTG: La₃Ta_{0.5}Ga_{5.5}O₁₄)結晶で得られた電子伝導性のメ カニズムの理解¹⁾に立脚し、Ta あるいは Ga の金属不足型欠陥の発生ができるだけ少なく なるような結晶構造(組成および元素の結晶サイトの占有モード)をイオン半径、結晶構 成要素の結晶サイト存在に関する自由度、および、vacancyの存在形態から検討し、高抵 抗率を示すランガサイト型結晶の開発を目指した。

2. ランガサイト型結晶の電気伝導メカニズム -ランガテイト結晶を例にとって-

ランガサイト型結晶の代表としてランガテイト(LTG: La₃Ta_{0.5}Ga_{5.5}O₁₄)結晶を選び、 その電気伝導メカニズムを調べた。すなわち、LTG系単結晶の電気伝導機構の解明を LTG単結晶育成において発生する金属不足型の格子欠陥から捉えた。LTG系結晶は、La, Ga, Ta, Oの4元素で構成されているため、欠陥生成反応が非常に複雑である。更に、不 純物も電気伝導率に影響を与えるため、不定比性に起因する格子欠陥と不純物に起因する 格子欠陥を分離するのは容易ではない。そこで、単結晶及び焼結体の電気伝導率の酸素 分圧依存性の結果と組成分析を組み合わせることにより、キャリアを発生する格子欠陥の 種類の特定を試みた。

2-1. 電気伝導測定

純度4NのLa₂O₃, Ta₂O₅, Ga₂O₃原料を混合し、1400℃,10h大気中で焼結し、LTG原料を作製した。単結晶の育成はるつぼ材の混入がないFZ法(浮遊帯溶融法)にて行った。 育成速度 3mm/h、育成雰囲気は酸素分圧が 0.001~1atm の範囲内のO₂/Ar 混合雰囲気と し、数点の各酸素分圧下でそれぞれ育成を行った。LTG 焼結体は同様に、LTG 原料で圧 粉体を作製し、0.001~1atmの範囲内の数点の各酸素分圧下で1450℃,10h焼結を行った。

育成酸素分圧による偏析の変化を調べるために、各酸素分圧下で育成した単結晶及び焼 結体の EPMA 分析を行い、各元素濃度を調べた。

単結晶(0.001,1atmの酸素分圧下で育成)及び焼結体(0.1atm酸素分圧下で焼結)の イオン輸率の測定を 300℃~900℃の温度範囲で行った。

電気伝導率のキャリア濃度を Kroger-Vink 図を用いて解析するために、各酸素分圧条件 で育成した単結晶及び焼結体を 300℃~1000℃、大気中にて電気伝導率を測定した。 2-2. 電気伝導の酸素分圧依存性

図1に単結晶及び焼結体の酸素分圧に対する各元素濃度変化を示す。焼結体の場合は焼 結雰囲気の酸素分圧によって組成が変化しないのに対し、単結晶の場合は、育成雰囲気の 酸素濃度が高くなるとTa濃度が低下する傾向が見られた。焼結体で起きる固相-気相反応 では金属の蒸気圧は酸素蒸気圧と比較すると無視できる大きさであるため、金属元素の焼 結体組成比は原料組成である化学量論組成からのずれがほとんどない。よって、単結晶は 育成酸素分圧が高くなるにつれてTa-poor側に偏析が起きていると考えられる。

図1 単結晶及び焼結体の各元素濃度

図2に 0.001,1atm 酸素分圧下で育成した単結晶及び焼結体サンプルのイオン輸率測定 結果を示す。単結晶、焼結体共に電気伝導のキャリアは 600℃以下では電子伝導体が支配

図2 単結晶及び焼結体のイオン輸率

ャリアは 600℃以下では電子伝導体が支配 的なのに対し、700℃以上ではイオン伝導 体が支配的になると考えられる。

300℃~1000℃における単結晶、及び焼結 体の電気伝導率の育成もしくは焼結雰囲気 の酸素分圧に対する変化を図3及び図4に 示す。焼結体は全温度範囲で電気伝導率の 酸素分圧依存性がないのに対し、単結晶は 低温では育成酸素分圧に対する電気伝導率 変化が大きく、高温になるに従って変化率 が小さくなる傾向を示した。また、育成酸 素分圧 0.005atm を境にして、高酸素分圧 側は育成酸素分圧が高くなるほど電気伝導 率が大きくなるのに対し、低酸素分圧側は 酸素分圧が低くなるほど電気伝導率が大き くなる。

図 3 単結晶の酸素分圧に対する電気伝導率 図 4 焼結体の酸素分圧に対する電気伝導率

結晶(0.005~1atm)及び焼結体(0.001~ 1atm)の電気伝導率の酸素分圧のべき指数の温 度依存性を図5に示す。単結晶の場合は、300℃ ではべき指数が0.55と大きな値を示すのに対 し、高温になるに従ってべき指数が低下する。 一方、焼結体の場合は電気伝導率に焼結酸素分 圧依存性がないために、0付近の値を示した。

2-3. ランガテイト結晶の電気伝導メカニズム 2-3-1. 0.005atm 以上の育成酸素分圧下で育成 した単結晶における電気伝導機構

電気伝導率 σ はキャリアの価数 q, 濃度 c, 移動度 μ とすると次式で与えられる。

図5単結晶及び焼結体のべき指数変化

(1)

$\sigma = qc\mu$.

結晶育成中の定常状態において固液界面において局所平衡が成立しているとすると、中性 Ta 金属空孔 (V_{Ta})の形成が以下の式で表される。

$$\frac{5}{4}O_2 \leftrightarrow V_{Ta}^{\times} + \frac{5}{2}O_0^{\times}.$$
(2)

格子位置酸素 (O_0^x) 濃度は1と仮定できるので、育成酸素分圧を pO_2 とすると、質量保存の法則から式 (2) の平衡定数 (K_{vx}) と自由エネルギー (ΔG_{vx}) は、以下の式になる。

$$K_{V_{Ta}^{\times}} = [V_{Ta}^{\times}](pO_2)^{-4/5}$$
.

 $\Delta G_{V_{Ta}^{\times}} = \Delta G_{V_{Ta}^{\times}}^{0} + RT InK_{V_{Ta}^{\times}}.$

(4)

(3)

 pO_2 は育成雰囲気の酸素分圧、Rは気体定数、 ΔG_{vc}^0 は Ta 空孔形成の標準自由エネルギー である。平衡状態では $\Delta G_{v_z} = 0$ なので、式(2),(3)からLTGの固化温度を T_s とすると、 中性 Ta 空孔濃度は式(5)で与えられる。

$$[V_{Ta}^{\times}] = (pO_2)^{5/4} \exp(-\Delta G_{V_x^{\times}}^0 / RT_s).$$

中性の Ta 空孔濃度は酸素分圧が高くなると、酸素分圧の 5/4 乗に比例して増加すること がわかる。また、FZ 法による LTG 結晶育成では、固液界面付近の温度勾配は非常に大き く、かつ、融点が1490°Cと測定温度に比べて非常に高温である。よって、電気伝導率を測 定する際でもTa空孔濃度は結晶育成時と変わらないと考えられる。従って、中性のTa空 孔が価電子帯にホール(h・)を一つ形成し、1価のTa空孔(Vra)となる反応は以下のよ うになる。

$$V_{Ta}^{\star} \leftrightarrow V_{Ta} + h^{\bullet}$$

温度が上昇すると、Ta 空孔のイオン化が進み、ホールがさらに放出される。一方、Ta 空 孔濃度はある育成温度及び酸素分圧で固定されているため、Ta 空孔がよりイオン化されて 各イオン価の Ta 空孔濃度は変化しても、全体の Ta 空孔濃度は一定である。式(6)の平 衡定数(K_v)は以下のようになる。

$$K_{V_{Ta}^{'}} = [V_{Ta}^{'}]p/[V_{Ta}^{\times}].$$
(7)

電気的中性条件は式(8)で表される。

 $[V_{T_{a}}] = p$.

式(8)に(5)、(7)を代入するとホール密度(p)は酸素分圧の 5/8 乗に比例することがわかる。 $p = (K_{V_{T_a}})^{1/2} [V_{T_a}] \propto (pO_2)^{5/8}$. (9)

同様に、V_{Ta}(n="~"")を n 価の Ta 空孔とすると、温度が上昇しイオン化が進んだ場合のイ オン化反応とホール濃度(p)は以下のように表される。

$$V_{Ta}^{\times} \leftrightarrow V_{Ta}^{"} + 2h^{\bullet}.$$
⁽¹⁰⁾

$$p = (2K_{V_{T_{a}}^{"}})^{1/3} [V_{T_{a}}^{\times}]^{1/3} \propto (pO_{2})^{5/12}.$$
(11)

$$V_{Ta}^{*} \leftrightarrow V_{Ta}^{'''} + 3h^{*}.$$
⁽¹²⁾

$$p = (3K_{y_{T_2}^{"}})^{1/4} [V_{T_3}^{\times}]^{1/4} \propto (pO_2)^{5/16}.$$
(13)

$$V_{Ta}^{\times} \leftrightarrow V_{Ta}^{""} + 4h^{\bullet}.$$
⁽¹⁴⁾

$$p = (4K_{V_{Ta}^{"}})^{1/5} [V_{Ta}^{\times}]^{1/5} \propto (pO_2)^{1/4}.$$
(15)

$$V_{Ta}^{\times} \leftrightarrow V_{Ta}^{""} + 5h^{\bullet}.$$
⁽¹⁶⁾

$$p = (5K_{v_{Ta}^{m}})^{1/6} [V_{Ta}^{\times}]^{1/6} \propto (pO_2)^{5/24}.$$
(17)

以上の式から、Ta 空孔のイオン化が進むにつれて酸素分圧のべき指数が 5/12(0.42),

(5)

(8)

(6)

5/16(0.31), 1/4(0.25), 5/24(0.21)と減少していくのがわかる。600°C以下のホールが支配的な キャリアである温度範囲における単結晶のべき指数を表1に示す。この実験値と Ta 空孔 のイオン化に伴うべき指数を比較すると、支配的な Ta 空孔は表2のようになる。

Temperature(°C)	0.005-1	0.001-0.005	Temperature(5)	Dominant
	atm	atm		Ta vacancy
300	0.55	-0.76	300	V_{Ta} , V_{Ta}
400	0.53	-1.03	400	$V_{-}^{'}$ $V_{-}^{''}$
500	0.42	-0.89	500	• Ta , • Ta
600	0.38	-0.98	500	V_{Ta}
			600	$V_{Ta}^{"} V_{Ta}^{""}$

表1 単結晶のべき指数

表 2 支配的な Ta 空孔

酸素分圧が高くなるとキャリア濃度が高くなる p型の欠陥生成反応は、金属不足酸化物も しくは酸素過剰酸化物である。Ta 空孔型以外で金属空孔が形成される場合にとりうる最大 の酸素分圧のべき指数は、Ga 空孔及び La 空孔では 3/8 (0.375)であり、Ta サイトに Ga が 置換した場合は 1/4 (0.25) である。また、格子間酸素の場合は 1/4 (0.25)である。よって、 実験結果の 300°C での 0.55 というべき指数を満たす事が出来るのは Ta 空孔のみであり、 電気伝導のキャリアは Ta 空孔から発生するホールが最も支配的であると考えられる。

2-3-2.0.005atm 以下の育成酸素分圧下で育成した単結晶における電気伝導機構

0.005atm以下では育成酸素分圧が小さくなるほど電気伝導率が上昇している。よって、 n型の欠陥生成反応であるため、金属過剰酸化物もしくは酸素不足酸化物と予想される。 しかし、表1に示した酸素分圧のべき指数は酸素空孔の場合にとりうる-1/4(-0.25)もしく は-1/6(-0.18)よりも非常に大きな負の値であることから、格子間酸素ではないと考えられ る。LTGの結晶育成では、低酸素分圧下になるとメルトからのGa蒸発が起き始めること が確認されている。よって、Gaの蒸発がキャリアの発生源となっている欠陥を生成してい ると考えられる。

2-3-3. 焼結体の電気伝導機構

焼結体の場合は電子伝導が支配的な 600℃以下において酸素分圧依存性が見られなかった。したがって、欠陥濃度と酸素分圧に関係しない不純物がキャリアの発生源になっていると考えられる。電気的中性条件として式(18)を仮定する。

$n+2[O_i^{"}]+[A_i] = p+2[V_0^{"}]+[D^{"}]$

(18)

ここで、Aは1価のアクセプター、Dは1価のドナーである。

以上より、図6に電子伝導体が支配的な温度領域である 300℃でのキャリア濃度の酸素 分圧依存性の模式図を示す。育成酸素分圧 0.005atm を境にして、高酸素分圧側では酸素分 圧が高くなるほど Ta 空孔濃度が上昇するためにホール濃度が上昇するのに対し、低酸素 分圧側では Ga 蒸発の影響から酸素分圧が低くなるほどキャリア濃度が上昇すると考えら れる。一方、焼結体では焼結雰囲気によらずにキャリア濃度はほぼ一定であり、これはキ ャリアの発生源が不純物であることを示唆する。

3. 高温において高抵抗を示すランガサイト型結晶材料の設計 前章で明らかにしたランガテイト結晶の電子伝導性のメカニズム ¹によれば、結晶の抵

抗率を増大させるには金属不足型欠 陥の発生を極力少なくすればよい。 具体的には、酸素導入により Ta や Gaの空格子(アクセプタとして働く) の発生がない構造を持つ結晶が作製 できれば良い。我々は化学量論の概 念を熱力学観点から本質的に見直し、 あえて空格子点や不純物を含んだ新 しい化学量論組成の展開を試み、い くつかの新しい化学量論結晶を作製 してきた。すなわち「不純物や空格 子点を含むすべての物質構成要素の 活量は1であることが化学量論の本 質である」ことを解析並びに実験で 証明してきた^{2,3)}。そこで、この新概 念により化学量論組成を持つランガ サイト型結晶の設計を行った。ラン ガサイト型結晶には A, B, C, D の 4 つのサイトが存在し(図7)化学式

図 6 300°C での酸素分圧とキャリア濃度の関係

は A₃BC₃D₂O₁₄ と表せる。それぞれ、8,6,4,4 配位である。4 つ以上の元素を用意し、 各々の元素は必ず1 つのサイトにのみ存在することが各元素の活量が1 になることの必要 条件である。しかしながらこの条件が実現するには、完璧な化学量論 CTGS(Ca₃TaGa₃Si₂O₁₄) 結晶でなければならないが、調和融解組成と一致しないので4 元系での適正な融液組成の 探索は困難である。こうなるとアンチサイト欠陥を伴う結晶でありながら金属不足型欠陥 の発生の程度が最小であるような結晶を見出すのが現実的である。そこで我々の開発した 結晶サイトモデルを適用して最適結晶構造を求めることにした。

図7 ランガサイト型結晶のサイト構造

3-1. 結晶構造のデザイン

3-1-1. 各サイトに許される元素や空格子の 組み合わせ

アンチサイト欠陥の発生を防ぐには各サ イトでどのような元素組み合わせが良いだ ろうか検討する。ここでいくつかの仮定を 設ける。まず、酸素イオンは常に結晶構造 のフレームワークを構成し、酸素欠陥は存 在しない。これは前章で示したようにラン ガサイト型結晶は、単結晶でも多結晶の焼 結体でも 1200 °C 10hのアニール処理にお いて 0.001~1 atm の酸素分圧変化による電

気伝導度には変化が観測されず、電気伝導に影響を及ぼす結晶内酸素濃度に変化がないと 考えられること、また、還元雰囲気で融液から結晶を育成しても酸素欠陥がカラーセンタ ーとなり育成結晶が着色するような現象がみられないことからも十分に推察できる。

この前提をもとに次の3つの観点からランガサイト型結晶の各サイトに許される元素や 空格子の組み合わせを検討した。すなわち、

①イオン半径

②電荷中性

③元素のサイト占有の自由度

である。①、②は、従来からよく用いられている検討方法である。各構成イオン半径につ

表	3	陽イ	オ	ン	候補	と	そ	の配位数
1	0	1997	~4	~	ini 79	<u> </u>	\mathcal{L}	·/ HL L. 9/

陽イオン	価数	配位数	イオン半径(Å)
La	+3	8	1.16
Ca	+2	8	1.12
Та	+5	6	0.64
Nb	+5	4 6 8	0.48 0.64 0.74
Ga	+3	4 6	0.47 0.62
Al	+3	4 6	0.39 0.54
Si	+4	4 6	0.26 0.40

いて表3に記した。Ca、Ta (Nb)、Ga、Si のイ オン半径からこれらの元素は、それぞれ8配位 の A サイト、6 配位の B サイト、4 配位の C サイト、より小さいサイズの4配位のDサイト を占有するのが順当であるのがわかる。8配位 のAサイトにはCaのみが存在すると仮定する。 CNGS も基本的には CTGS と同様な構造をとる と考えられるが、Nbは8配位や4配位も採るの で Nb の A サイト、C サイトの存在の可能性も 検討する必要がある。一方、②の電荷中性につ いては、元素の価数にその数を乗じた値の合計 が陰イオンの酸素の総荷数に等しくなれば良い。 ランガサイト型結晶の化学式を A₃BC₃D₂O₁₄ と すると 28 である。一方、③については Gibbs の相律を導く手段と同様な方法で元素の数と束 縛条件の数を比較してサイトを占有する元素あ

るいは空格子の組み合わせを判断する。これは、我々が開発した強力な結晶デザインツー ルである。我々が開発したこのアプローチについて次に解説する。

3-1-2. 結晶構成要素の結晶サイト占有に関する自由度

サイトにある元素あるいは空格子の数はこれらの存在の束縛条件の数より大きくなけれ ばならない。少なくとも3種の束縛条件が考えられる。

(ア) *j* 個のサイト構成要素(元素や空格子)がある時、そのモル分率の和は、1であること、

 $\sum_{i=1}^{J} X^{i} = 1$.

(イ)構成要素、'i' が複数のサイト (β_N)に存在する場合は、各サイト間で'i'の化学ポ テンシャルが等しくなる。

$$\mu_{\beta_1}^{\mathsf{i}} = \mu_{\beta_2}^{\mathsf{i}} = \mu_{\beta_3}^{\mathsf{i}} \cdots$$

(ウ) また、空格子(vacancy)の数 V は、電荷中性より決定される。

$$\sum p^{i}m^{i}+q^{i}V^{i}=2n^{o}$$

(21)

(20)

(19)

ここで mⁱは、元素'i'の価数、pⁱは、その個数、q は空格子点に存在したイオンの価数、V は、空格子点の数、n^oは、酸素の個数である。これは、非常に強力な方法で、例えば、圧 電材料や光学材料として多用されているコングルエント組成の LiNbO₃(ニオブ酸リチウム) には、Liサイトにアンチサイト Nb が存在するが、電荷中性のための空格子が Li サイトと Nb サイトのどちらに存在するかは、構造解析の実験精度の問題により過去半世紀に渡り決 着が完全についているわけではない。ここに我々の開発した元素のサイト占有の自由度に よる検討を適用すると、すぐに空格子は Li サイトに存在し、Nb サイトには存在できない 事がわかる。このように③元素のサイト占有の自由度は、結晶構造を決定する上で非常に 有効な手段となる。

①~③の観点から検討した CTGS の各サイトへの元素の占有の可能性について表4にま

とめた。例えば Ga が B サイトに入る可能性を検討してみる。B サイトに Ta, Ga, vacancy

CTGS: Ga in B site							
А	В	C	D	g: Ga population ratio in B site			
3	1	3	2	v: Vacancy population ratio			
Ca	Ta	Ga	Si	Stoichiometric O			
Ca	Ta, Ga	Ga	Si	$g = 0 \rightarrow$ Stoichiometric			
Ca	Ta, Ga, V	Ga	Si	$2g + 5v = 0 \rightarrow Stoichiometric$			
Ca	Ta, Ga	Ga, V	Si	$2g + 3v=0 \rightarrow$ Stoichiometric Negative freedom in site occupancy $\rightarrow C$ site	×		
Ca	Ta, Ga	Ga	Si, V	$5g + 4v = 0 \rightarrow Stoichiometric$	×		
CTGS: Ga in B site and Si in C site							
А	В	C	D	s: Si population ratio in C site v: Vacancy pop	ulation ratio		
3	1	3	2	g: Ga population ratio in B site			
Ca	Ta, Ga	Ga, Si	Si	s - $2g = 0$ Negative freedom in site occupancy $\rightarrow C$ site	×		
Ca	Ta, Ga	Ga, Si, V	Si	s - 2g - 3v = 0 Negative freedom in site occupancy $\rightarrow C$ site	×		
Ca	Ta, Ga, V	Ga, Si	Si	s - 2g - 5v = 0 Negative freedom in site occupancy $\rightarrow C$ site	×		
Ca	Ta, Ga	Ga, Si	Si, V	s - 2g - v = 0 Negative freedom in site occupancy \rightarrow C, D site	×		
			C	TGS: Si in C site			
А	В	C	D	s: Si population ratio in C site			
3	1	3	2	v: Vacancy population			
Ca	Ta	Ga, Si	Si	$s = 0 \rightarrow Stoichiometric$	×		
Ca	Та	Ga, Si, V	Si	s - 3v = 0	0		
Ca	Та	Ga, Si	Si, V	s - 4v = 0 Negative freedom in site occupancy \rightarrow D site ×			
Ca	Ta, V	Ga, Si	Si	s - 5v = 0	0		
	CTGS: Ga in D site						
А	В	C	D	g: Ga population in D site			
3	1	3	2	v: Vacancy population ratio			
Ca	Та	Ga	Si, Ga	$g = 0 \rightarrow Stoichiometric$	×		
Ca	Та	Ga	Si, Ga, V	$g + 4v = 0 \rightarrow \text{Stoichiometric}$			
Ca	Та	Ga, V	Si, Ga	$g + 3v = 0 \rightarrow$ Stoichiometric	×		
Ca	Ta, V	Ga	Si, Ga	$g + 5v = 0 \rightarrow Stoichiometric$	×		
CTGS: Ta in C site							
А	В	С	D	t: Ta population ratio in C site			
3	1	3	2	v: Vacancy population ratio			
Ca	Та	Ga, Ta	Si	$t = 0 \rightarrow Stoichiometric$	×		
Ca	Ta, V	Ga, Ta	Si	$\begin{array}{c} 2t - 5v = 0 \\ \text{Negative freedom in site occupancy} \rightarrow \text{B site} \end{array} \times$			
Ca	Та	Ga, Ta, V	Si	2t - 3v = 0	0		
Ca	Та	Ga, Ta	Si, V	t - 2v = 0	0		

表 4 サイトの自由度から検討した各要素のサイト占有の可能性

が、C サイトに Ga が、D サイトに Si が存在するとする。ここで Ga の B サイトにおける 占有率をgとし、vacancyの占有率をvとすると電荷中性より、2g+5v=0となる。g>0, v>0 を考えるとg = v = 0となり結果として stoichiometric の CTGS になってしまう。一方、Ga が B サイトに入ると同時に Si を C サイトに入れる構造を考えてみる。B サイトに Ta, Ga が、C サイトに Ga,と Si (その占有分率を s とする)及び vacancy が、D サイトに Si が存 在する場合は、電荷中性は s-2g-3v=0 で成立する。しかし、C サイトの自由度を考えて みると、Ga, Si, vacneyの3つのパラメータに対し、束縛条件は、(ア)これらのモル分率 の和が1となる、(イ) Ga に関して B、C サイト間で化学ポテンシャルが等しくなる、 $\mu_{B-site}^{Ga} = \mu_{C-site}^{Ga}$ 、Si に関して C、D サイト間で化学ポテンシャルが等しくなる、 $\mu_{C-site}^{Si} = \mu_{D-site}^{Si}$ 、 (ウ) 電荷中性の条件から vacancy の濃度が決定されるとなり、束縛条件の数は4 でパラ メータの数の3より多くなる。すなわち、この元素や空格子の組み合わせは不可能となる。 このように電荷中性の条件を満たしていても熱力学的自由度の条件が満たされない元素や 空格子の組み合わせは多い。その結果、実現可能な組み合わせは、 stoichiometric の CTGS 以外に、SiがCサイトに存在する固溶体、TaがCサイトに存在する固溶体の3種が考え られる。一方、CNGSに関しては、Taの替わりに Nb が存在することになるが、Nb が 8 配 位や4配位も採れることを考慮すると Nb が A サイトや C サイトに存在する組み合わせを 検討する必要がある。しかしながら後に述べるように CNGS の固溶体領域は CTGS に比べ 大きく、電荷を持つ金属空孔が発生しやすいので、結晶育成は CTGS を対象にする。それ では、図8のサイト構造の中からどれを選べば良いのか次に検討する。

図8 CTGS 結晶に可能なサイト要素分布

(s: Si, t: Ta, v: vacancy, 下付きの B,C,D はこれらの要素が存在するサイトを示す。)

3-1-3. 電荷中性をとるために導入される空格子点とアクセプターとなる空格子点結晶に存在する空格子点(vacancy)には2種ある。一つは、結晶が固溶体を形成する際に電荷中性をとるために導入される空格子点である。表4や図8にある vacancy がこれに相応する。この空格子点自身には電荷はない。一方、式(2)に表されるように酸素が固体に入り格子点を形成することに対応して生成する金属の格子点がある。酸素に対して中性を保つため電荷を内在する。アクセプターとして機能する。これらの異なる2種の空格子点は相互関係を持つ。すわなち、電荷中性のための空格子点が多いとアクセプターになる空格子点の発生に必要な活性化エネルギーが減少し、その生成量は多くなる。

3-1-4. 高抵抗率を示す CTGS のサイト構造

化学量論の CTGS 結晶は空格子点が存在しないので最もアクセプター空格子点が発生し にくいと考えられる。しかしながら、次章の結晶育成で述べるように、化学量論組成は調 和融解組成と一致せず固溶体領域の端部に存在するので化学量論組成の結晶と共存する融 液組成は調和融解点から大きくずれ、育成が不安定になる。そこで現実的には、電荷中性 の空格子点がアクセプター空格子点の発生に関わる Ta や Ga と共存しないサイト構造を 持つ結晶を選ぶのが良い。この観点から図8をみると空格子点が D サイトにあり Si と共 存する構造が良い事がわかる(下から2番目)。このとき調和融解点に近い組成となるよう に C サイトの Ta/Ga 比や D サイトの Si 量(図のチャージバランス式からわかるように D サイトの空格子点の量は、C サイトの Ta 量に比例する)が適正値になるようにする。

4. CTGS の結晶育成

4-1-1. CTGS 及び CNGS の固溶体領域

CTGS や CNGS について複数の組成の焼結体(1200°C で焼結)を作製し、格子定数の変化を検討し、これらの固溶体領域を求めた。その結果、1200°C では化学量論

図9 CTGS および CNGS の格子定数の組成依存性と固溶体領域

組成は CTGS や CNGS の固溶領域には存在しない。すなわち化学量論組成はより高温 で固溶領域の端部にあり、固相線上のこの組成に対する液相線上の組成との間には大 きな開きがあると予想される。

4-1-2. CTGS 及び CNGS の調和融解性と融液の不混和現象

ランガサイト型結晶は、非調和融解性を示 すものが多いので CTGS と CNGS について 非調和融解性の有無を調べた。1650 °C 以上 の高温まで昇温できる示差熱分析装置 (DTA) を使用すると融解-凝固のピークがただ一対 出現するだけだが、昇温の上限が 1500 °C ま での汎用型の DTA で測定すると CTGS 以外 の相が存在しているデータが得られる。この 相の化学組成を解析すると非調和融解性に関 連する相ではなく、CTGS の融液が Ga-rich 融液と Si-rich 融液に相分離を起こし、 Ga-rich 側からは、CTGS が、Si-rich 側から はカルシウム珪酸塩が晶出することがわかっ た (図 10)。

4-1-3. CTGS 結晶の育成と電気伝導率測定

ランガサイト型結晶 CTGS のデザイン指針(図8の下から2番目)、及び CTGS 結晶の 固溶体領域(図9)から CTGS の固溶体領域で化学量論の組成に対し、Ga/Ta 比が小 さく、また、Si の含有量が小さい組成を選び、この融液から引き上げ法で CTGS 結晶 (18mm 径×60 mm 長)を育成した(図11)。なお、CTGS は、示差熱分析から調和 融解物質である事がわかっている。この結晶の伝導度を空気中で 400~1000 °C まで測 定した。その結果、図 12 に示すように 400 °C における比抵抗が 1.8×10¹⁰Ω・cm と なり圧力センサーの仕様を超える値となった(図中の丸で囲ったデータ)。

図 11 CTGS 単結晶

図 12 CTGS の抵抗率変化

5. まとめ

車載用燃焼圧センサー用として高抵抗を示す4元系のランガサイト型結晶、CTGS、 CNGSの適正組成を、イオン半径、vacancyの存在形態、及び、結晶構成要素の結晶サイ ト存在に関する自由度から検討した。特に結晶サイトの自由度による検討法は、我々の提 唱する新しい化学量論組成の概念に基づいて開発した有力な結晶デザインツールである。 その結果、Ga/Ta比とSi含有量が化学量論組成より小さいCTGS結晶で1.8×10¹⁰Ω・cm @400°Cの抵抗率が得られた。これは、車載用燃焼圧センサー用圧電基板材料としての仕 様をクリアしている。

参考文献

- 1) R. Yaokawa, S. Uda, H. Kimura and K. Aota, J. Appl. Phys., 108 (2010) Art. No. 064112.
- 2) S. Uda, J. Cryst. Growth, **310** (2008) 3864.
- 3) H. Kimura and S. Uda, J. Cryst. Growth, 311 (2009) 4094.

発表論文

- 1) R. Yaokawa, S. Uda, H. Kimura and K. Aota, J. Appl. Phys., 108 (2010) Art. No. 064112.
- 2) C. Y. Chung, R. Yaokawa, H. Mizuseki, S. Uda and Y. Kawazoe, J. Appl. Phys., 108 (2010) Art. No. 113505.
- 3) R. Yaokawa, H. Kimura, K. Aota and S. Uda, *IEEE Trans. Ultrason. Ferroelectr. Freq.* Control, 58 (2011) 1131.
- 4) W. L. Johnson, S. A. Kim, S. Uda and C. F. Rivenbark, J. Appl. Phys., **110** (2011) Art. No. 123528.
- 5) 宇田聡、八百川律子、青田克己、(独)日本学術振興会弾性波素子技術第 150 委員会 第 121 回研究会資料(2011)1.

Study of site structure of langasite-type crystal optimized for a substrate of combustion pressure sensor for automobile use

Crystal chemistry, Citizen Holdings Inc.*

S. Uda, R. Yaokawa*, H. Zhao, K. Maeda, J. Nozawa, K. Fujiwara

Abstract

Four-element langasite crystals have been examined as a promising piezoelectric substrate for high-pressure sensor for automobile use at high temperature. They are CTGS ($Ca_3TaGa_3Si_2O_{14}$) and CNGS ($Ca_3NbGa_3Si_2O_{14}$), which have been proved to be congruent-melting material. Their optimum compositions have been investigated based on the ionic radius of constituent elements, charge neutrality and the freedom of crystal site for element occupation. The last criterion has been newly developed for narrowing down the possible occupation of elements in crystal site based on the restrictions; mass balance in site, equality of chemical potential of element distributed among sites and the vacancy population due to charge compensation. This allows us to determine the optimum composition of CTGS, i.e., higher Ga/Ta ratio and smaller amount of Si than stoichiometric composition. The crystal grown from such melt shows the resistivity of $1.8 \times 10^{10} \Omega \cdot cm$ at 400 °C, which satisfactory meets the resistivity specification of the high-pressure sensor used for automobiles.